
Softimage Explosia FX
Overview

© 2014-2015 Blackcore tech, All rights reserved.

Voxel based gas fluid simulator

• -Dense voxel fields

• -Fully CPU based

• -Aimed to SolidAngle Arnold render

• -NVidia MentalRay as fallback

• -General data exchange via OpenVDB

• -Field manipulation via nodes (ICE)

• -Shader assembling via nodes(ICE,RT)

• -Fast preview, consistent with Arnold

Simulation Primitive
• Rectangular box filled with voxels - field

• Field carries data, kind of per voxel context

• Only scalar fields, 1 voxel = 1 scalar value

• Vector3 data formed as 3 scalar fields

• Same for color(RGB) data

Field
• Always have a name and resolution

• Work with fields differs from typical ICE workflow

• Field holder node is capable to output field reference only

• All subsequent processing done with the same field by its reference

• Except few utility nodes such as copy-field nodes

• Hence no redundant copies and no extra memory consumed

• But need to make explicit copies via copy-field-node in some cases

Important to understand

Data Debug Visualization
• Field is not native primitive for Softimage

• Requires special care on visualization

• ExplosiaFX provides dedicated preview OpenGL viewport

• And introduces three drawing primitives:

• Scalar field slice, draws field content in slice using remapping RGB gradient
• Vector field slice, draws 3 scalar fields slice as array of lines(vectors)
• SDF Isosurface, draws triangle array of SDF(obstacles, will discuss later)

• Has 10 drawchannels
• Each drawprim binds to any channel
• Switching between channels by hotkeys 0-9 respectively

Debug Visualization Slices
• Picked at specific place and time, no time depended on field state

• Colorized with RGB gradient, also has min-max values statistic

• Pick position defined in either local (0-1) or world (-INF,+INF) cords

SDF
• Stands for Signed-distance-field, we actually have only DF

• Internally is just a set of scalar fields, 1 per non-overlapping polygon
island

• Contains distance from current voxel to closest point on island mesh

• Used as a data emitter or/and as an obstacle for solver

• Voxelizes and solves for distance any closed mesh directly

• Applies shell to open meshes (with holes)

• Can transfer any scalar or vector3 attribute within per-point or
single-object context from input polygonal mesh

SDF
• Input mesh treated as closed physically, meaning two equivalent

vertices (v1pos = v2pos) define connection, easy way to transfer per
node attribute (such as UV, texture etc.) is to disconnect all triangles

• Object velocity tracked automatically by default, stored in “velocity”
vector3 attribute, but only for static topology

• Inner/outer iso defines a chain(or surface) of voxels with values=iso

• Possible to shift collision zone and use simultaneously as emitter and
obstacle

Stamping (Emission)
• Data emission from source to field
• From particles
• From SDF
• From field-to-field (strictly speaking not stamping)

• Data stamping has several math application modes(set,add,sub,etc)

• Smoke, heat, fuel are bounded to [0,1] range and applied as set/max
operation

• Pressure (artificial divergence, negative value explodes, positive
tends to collapse) is unbounded and usually applies as set op

• Velocity is either set or add op (to account for existing velocity there)

Particle stamping
• Each particle has position, velocity,

radius and user stamping data: scalar
and vec3 types

• Sometimes useful to expand radius on
velocity stamp, keeping it small for
smoke

• Fast moving particles require more
substeps to avoid sparsity between
last and current positions, particle
trailing as an solution

SDF Stamping
• Values at surface(upper voxel band) and

core(deepest voxels) of emitter can be
different, so mid is interpolated

• Collision zone should starts at the
surface of stamping zone

• Stamp of user-attributes is by name

• Built-in attributes:
• vec3: velocity, sdfgradient, worldposition(used for UVW);

• scalar: sdf;

Simulation Framework
• Simulation processed on an orthogonal polycube which bounds

active domain – simulation container

• Simcontainer has a minimal set of fields and base parameters
(voxelsize, cache path, etc.)

• Any configuration has at least 9 fields: 3 velocity, 1 artificial pressure
and 5 auxiliary

• Possible to include fuel, heat, smoke and UVW

• Basic fluid motion requires only velocity (i.e. no smoke, fuel, heat)

• User-specified fields (e.g. colorRGB, age, mask) possible as well

Simulation Framework
• Simcontainer has 3 ICETrees: initialization, simulation, postsimulation

• The init tree setups base parameters and creates framework fields
• User specified fields initialization goes here as well

• The simulation tree performs stamping, simulation, fields export
• Tune ICE subsamples count here

• The postsim tree setups volume shader, exports multiple scattered light
and reads exported fields after the simulation for preview purposes
• Any changes made here will have an impact on the next frame of simulation(because of referencing)

• Solver (in general sense) has 3 stages:
• External forces injection (including burn solver)

• Incompressibility enforcement (well known pressure solver)

• Quantities and velocity transport (also known as advection or convection)

External Forces
• Buoyant forces, vorticity amplification, user-defined forces

• Burn solver decrements fuel, increments heat, smoke and pressure
• Big pressure (gas expansion) and rapid movement requires some air buffer around the

flame to prevent shape distortions

• Velocity damp, quantities dissipation

• Smoke, fuel and heat are restricted to [0;1] range
• Much easier to tune since no real physics are simulated in any CG fluid solver

• Use scalar/vector slices to see and debug channels data

Incompressibility enforcement
• After force injection we have invalid(compressed) velocity

• Pressure solver solves for correcting solution

• Solution correctness defined only by visual pleasure
• True for gases, water sims requires also mathematical error-free solution

• Modern multigrid solver gives nice result after only 2 iterations
• In most cases, extreme pressures and very hi-res grids sometimes need more

• Unnatural shape distortions can be resolved by increasing air buffer
zone

• Artificial positive and negative pressure causes shrink and expansion
• Strictly speaking we are talking about artificial divergence rather pressure

Advection
• Any advection tends to smooth out eddies in flow over time

• Use “smart” advection type to minimize diffusion
• Smart makes use of +3 additional fields internally, not preferable to use on hi-res sims

• When dealing with colorRGB advection it may be useful to stamp
with wider stencil to avoid desaturated shape borders caused by
advection diffusive errors

• Avoid big maxspeed per step parameter values, 5-10 is preferable
• Big values result in “rubber” flames and unnatural elongated flow features

Fields Input-Output
• Native format is uncompressed, no empty regions skipping

• Fast

• OpenVDB format is a standard for volumetric data exchanging
• Slow, but greatly reduces the final file size, up to tens times

• Writes selected fields each frame at the last ICE substep

• Reads on the timeslider dragging back
• Simcontainer polycube is updated on this read

• Multiplescattered light fields stored after the simulation, in the
postsim ICEtree
• Actually need to play each frame to evaluate the postsim tree (xsi arch nuance)

Fields tools
• Several basic math operations on scalar field, on scalar pairs, on

vector/vector pairs fields
• Result is stored to one of input fields

• More sophisticated ops available: divergence, gradient, curl etc.
• Mainly used for mask generation

• Turbulence (based on vector curl noise) and vorticity amplification
• Able to mask and/or multiply by another field
• Operates at user-specified scale
• Can be used multiply times as cascade with different scales

• Distinct diffusion solver, advection solver

• Particle scatter in field

• Field sampling by position (array/per-point contexts)

Volume shading
• Standard physical model, raymarching

• 3 main light properties: absorption + scattering + emission

• Material is assembled and exported along with fields in the
postICEtree
• Still possible to assemble/extend in RT

• Volume material building blocks(shaders) called mediums

• Three presets for fire, smoke and fire+smoke setups

• Multiple scattered light is evaluated in the postICEtree, saved
to field and then used at final rendering

• Preview rendering is consistent with both Arnold and Mray,
but uses light map as the main light solver, while final
renderers use ray-tracing

Absorption

Absorption + direct scattering

Absorption + direct scattering + multiple
scattering

Absorption + direct scattering + multiple
scattering + emission

Absorption + direct scattering + total
multiple scattering + emission

Volume medium assembling
• Similar to RT approach with material root node

• Mediums math similar to fields math

• Extra tools such as blackbody radiator and 3d noise

Limitations and future goals
• Dynamic obstacles can produce artifacts within multigrid solver

• Support of expressions will allow complex math in one-two line of
code instead of dozens of nodes

• Good GPU acceleration usually imposes 10x speedup (pure
difference of RAM bandwidth at CPU and GPU)

• Dedicated volume render can be pretty effective in many cases

• What next? –less memory, more speed, improved user interaction
and relaxed coupling with Softimage to wider DCC support

For more information visit:
http://blackcore.technology/softimageefx

https://vimeo.com/groups/efxfluid
https://groups.google.com/forum/?#!forum/explosiafx

© 2014-2015 Blackcore tech, All rights reserved.

http://blackcore.technology/softimageefx
https://vimeo.com/groups/efxfluid
https://groups.google.com/forum/?#!forum/explosiafx

