Softimage Explosia FX

Overview

© 2014-2015 Blackcore tech, All rights reserved.

Voxel based gas fluid simulator

* -Dense voxel fields

* -Fully CPU based

* -Aimed to SolidAngle Arnold render

* -NVidia MentalRay as fallback

* -General data exchange via OpenVDB
* -Field manipulation via nodes (ICE)

e -Shader assembling via nodes(ICE,RT)
* -Fast preview, consistent with Arnold

Simulation Primitive

* Rectangular box filled with voxels - field

* Field carries data, kind of per voxel context

* Only scalar fields, 1 voxel = 1 scalar value
* Vector3 data formed as 3 scalar fields
e Same for color(RGB) data

Field

Always have a name and resolution
Work with fields differs from typical ICE workflow
Field holder node is capable to output field reference only

All subsequent processing done with the same field by its reference
Except few utility nodes such as copy-field nodes

Hence no redundant copies and no extra memory consumed

But need to make explicit copies via copy-field-node in some cases

Important to understand

this is just a reference to the field

this will apply some math ko
the Field which we are
referencing

these voxels now
are changed by the
previos mathCp

Data Debug Visualization

Field is not native primitive for Softimage

Requires special care on visualization

ExplosiaFX provides dedicated preview OpenGL viewport
And introduces three drawing primitives:

e Scalar field slice, draws field content in slice using remapping RGB gradient
* \Vector field slice, draws 3 scalar fields slice as array of lines(vectors)
» SDF Isosurface, draws triangle array of SDF(obstacles, will discuss later)

Has 10 drawchannels
Each drawprim binds to any channel
Switching between channels by hotkeys 0-9 respectively

Debug Visualization Slices

* Picked at specific place and time, no time depended on field state
* Colorized with RGB gradient, also has min-max values statistic
* Pick position defined in either local (0-1) or world (-INF,+INF) cords

Help=F1; Current DrawChannel1

Registered items: 55=1 ¥5=0; T=0

SDF

Stands for Signed-distance-field, we actually have only DF

Internally is just a set of scalar fields, 1 per non-overlapping polygon
island

Contains distance from current voxel to closest point on island mesh
Used as a data emitter or/and as an obstacle for solver

Voxelizes and solves for distance any closed mesh directly

Applies shell to open meshes (with holes)

Can transfer any scalar or vector3 attribute within per-point or
single-object context from input polygonal mesh

SDF

Input mesh treated as closed physically, meaning two equivalent
vertices (vlpos = v2pos) define connection, easy way to transfer per
node attribute (such as UV, texture etc.) is to disconnect all triangles

Object velocity tracked automatically by default, stored in “velocity”
vector3 attribute, but only for static topology

Inner/outer iso defines a chain(or surface) of voxels with values=iso

Possible to shift collision zone and use simultaneously as emitter and
obstacle

Stamping (Emission)

Data emission from source to field

* From particles
* From SDF
* From field-to-field (strictly speaking not stamping)

Data stamping has several math application modes(set,add,sub,etc)

Smoke, heat, fuel are bounded to [0,1] range and applied as set/max
operation

Pressure (artificial divergence, negative value explodes, positive
tends to collapse) is unbounded and usually applies as set op

Velocity is either set or add op (to account for existing velocity there)

Particle stamping

* Each particle has position, velocity,
radius and user stamping data: scalar
and vec3 types

 Sometimes useful to expand radius on
velocity stamp, keeping it small for
smoke

* Fast moving particles require more
substeps to avoid sparsity between
last and current positions, particle
trailing as an solution

SDF Stamping

Values at surface(upper voxel band) and
core(deepest voxels) of emitter can be
different, so mid is interpolated

Collision zone should starts at the
surface of stamping zone

Stamp of user-attributes is by name
Built-in attributes:

vec3: velocity, sdfgradient, worldposition(used for UVW);
scalar: sdf;

Simulation Framework

Simulation processed on an orthogonal polycube which bounds
active domain — simulation container

Simcontainer has a minimal set of fields and base parameters
(voxelsize, cache path, etc.)

Any configuration has at least 9 fields: 3 velocity, 1 artificial pressure
and 5 auxiliary

Possible to include fuel, heat, smoke and UVW
Basic fluid motion requires only velocity (i.e. no smoke, fuel, heat)
User-specified fields (e.g. colorRGB, age, mask) possible as well

Simulation Framework
Simcontainer has 3 ICETrees: initialization, simulation, postsimulation
The init tree setups base parameters and creates framework fields

* User specified fields initialization goes here as well

The simulation tree performs stamping, simulation, fields export

* Tune ICE subsamples count here

The postsim tree setups volume shader, exports multiple scattered light
and reads exported fields after the simulation for preview purposes

* Any changes made here will have an impact on the next frame of simulation(because of referencing)

Solver (in general sense) has 3 stages:

. External forces injection (including burn solver)

. Incompressibility enforcement (well known pressure solver)

. Quantities and velocity transport (also known as advection or convection)

External Forces

Buoyant forces, vorticity amplification, user-defined forces

Burn solver decrements fuel, increments heat, smoke and pressure

e Big pressure (gas expansion) and rapid movement requires some air buffer around the
flame to prevent shape distortions

Velocity damp, quantities dissipation

Smoke, fuel and heat are restricted to [0;1] range
* Much easier to tune since no real physics are simulated in any CG fluid solver

Use scalar/vector slices to see and debug channels data

Incompressibility enforcement

After force injection we have invalid(compressed) velocity
Pressure solver solves for correcting solution

Solution correctness defined only by visual pleasure
* True for gases, water sims requires also mathematical error-free solution

Modern multigrid solver gives nice result after only 2 iterations
* In most cases, extreme pressures and very hi-res grids sometimes need more

Unnatural shape distortions can be resolved by increasing air buffer
zone

Artificial positive and negative pressure causes shrink and expansion
» Strictly speaking we are talking about artificial divergence rather pressure

Advection

Any advection tends to smooth out eddies in flow over time

Use “smart” advection type to minimize diffusion
* Smart makes use of +3 additional fields internally, not preferable to use on hi-res sims

When dealing with colorRGB advection it may be useful to stamp
with wider stencil to avoid desaturated shape borders caused by
advection diffusive errors

Avoid big maxspeed per step parameter values, 5-10 is preferable
e Bigvalues result in “rubber” flames and unnatural elongated flow features

Fields Input-Output

Native format is uncompressed, no empty regions skipping
Fast

OpenVDB format is a standard for volumetric data exchanging
Slow, but greatly reduces the final file size, up to tens times

Writes selected fields each frame at the last ICE substep
Reads on the timeslider dragging back

Simcontainer polycube is updated on this read

Multiplescattered light fields stored after the simulation, in the

postsim |ICEtree
Actually need to play each frame to evaluate the postsim tree (xsi arch nuance)

Fields tools

Several basic math operations on scalar field, on scalar pairs, on
vector/vector pairs fields
* Resultis stored to one of input fields

More sophisticated ops available: divergence, gradient, curl etc.
* Mainly used for mask generation

Turbulence (based on vector curl noise) and vorticity amplification

* Able to mask and/or multiply by another field
* QOperates at user-specified scale
* (Can be used multiply times as cascade with different scales

Distinct diffusion solver, advection solver
Particle scatter in field
Field sampling by position (array/per-point contexts)

Volume shading
Standard physical model, raymarching
3 main light properties: absorption + scattering + emission

Material is assembled and exported along with fields in the
postICEtree

» Still possible to assemble/extend in RT

Volume material building blocks(shaders) called mediums

Three presets for fire, smoke and fire+smoke setups

Multiple scattered light is evaluated in the postICEtree, saved
to field and then used at final rendering

Preview rendering is consistent with both Arnold and Mray,
but uses light map as the main light solver, while final
renderers use ray-tracing

Absorption

Absorption + direct scattering

Absorption + direct scattering + multiple
scattering

Absorption + direct scattering + multiple
scattering + emission

Absorption + direct scattering + total
multiple scattering + emission

Volume medium assembling
e Similar to RT approach with material root node
* Mediums math similar to fields math
* Extra tools such as blackbody radiator and 3d noise

Limitations and future goals

Dynamic obstacles can produce artifacts within multigrid solver

Support of expressions will allow complex math in one-two line of
code instead of dozens of nodes

Good GPU acceleration usually imposes 10x speedup (pure
difference of RAM bandwidth at CPU and GPU)

Dedicated volume render can be pretty effective in many cases

What next? —less memory, more speed, improved user interaction
and relaxed coupling with Softimage to wider DCC support

For more information visit:

http://blackcore.technology/softimageefx
https://vimeo.com/groups/efxfluid

https://groups.google.com/forum/?#!forum/explosiafx

© 2014-2015 Blackcore tech, All rights reserved.

http://blackcore.technology/softimageefx
https://vimeo.com/groups/efxfluid
https://groups.google.com/forum/?#!forum/explosiafx

